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1 INTRODUCTION

The results of past studies on Lounded-wave simulator field envirun-

ments in the working volume (Refs. 1 through 9) are strictly applicable to

ALECS and ARES which do not have a wood .itand. The wood stand (Fig. I)

is an integral part of the, ATLAS i (Trestle) and its presence will not on],

affect the field in the working volume, but also odify the responses of the

test object. The former effect is dee.med more -iz:ificant than the latter.

Numerical studies of the for-., r ., have bVvn .cc (mplished in Reference lH.

However, analytical studies are ex~remelv invalable to an overall understanding

of the ATLAS I field environment in the working volume, and have never been

conducted.

The objective of this report is to develop a simple electromagnetic

model for the ATLAS I wood stand that will yield a simple engineering analytic

form to describe accurately the ATLAS I field.

In Section II, formulas will be developed for the field distributions

and dispersion relations of the TE ('iL..nsverse Electric) surface-wave modes

supported liv dielectric 1:.. Section Ill is devoted to deriving numerical

values appropriate for the ATLAS 1 sinulator based on the formulas in Section II.

In Section IV the numerical values wil! be compared with the ATLAS I field mapping

data (Ref. 11) and simple engineering inalytical formulas for the ATLAS I simula-

tor fields will be obtained. Finally, in Section V a summary of important results

will be given.
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I DISPERSION (ELATION

Given a three-layered medium (Fig. 2), the prbie at hand is to find

the propagation constant of the TE surface wave (Hx, Hz, Ey ). The direction

of propagation is alon, tW z axis and there is no variation of the field in

the y direction. The time v.iriation of exiV(]t) is Issumed and suppressed.

To find the propagation constant one starts with Maxwell's equation"

V H "(1)

7j H - . (2)

Since only Ey, Hx Hz are nonzero and /t3v = 0, then

z -

V
z - j~Hx (3)

__ H Z (4)

3H 3H
z x -3x dz V ~J\ (3)

from which one obtains

- + W2 oc -C E =0 (6)dx 2  o y

where
EyE e"~ (7) ,

Equation 6 will be solved for each region shown in Figure 2.

1. Region 0 (e= Eo, x > a/2)

Assume there is no propagation in the x direction (decaying wave).

The solution of Equation 6 for E (0) can be written in the following form:
Y
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FK

At.. ( 8)

where

2 2 2k , , i. . -= (10)
k'. O k

The other field components ore

H v9) - - E(U) (11)

H(O) o .( )12

(0) (0)H = - j i. (12)

2. Region 1 (1 L 12r'

Equation 6 cakes the form

--- + k )i =I (13)
dx-

the solution of which is given by

[B .inh(I X) + C r Oh(.,lX) ] e- j z

where
X I =k/C2 2 ka,5
k 0 Fir k2  K Ir

and

S= _ _ (16)
x 

0

AM J [B cosh 1x + C sinh{3lx) e-j az  (17)

9



3. Region 2 o2 o'2r' x -I/-)

Equation t, i of th,. :.'rm

/d_ 2 (16)- "k ) - .. ( )

dx-

the solution ot which with p,, .irL. '',)i i:1 -.) direction is given by

1.:/ ' = ) ,(19)

where

? , ?-L,. , 2r"

and

H = (21)
x L; V

0

Hi2 =j"E 2  (22)

Matching the wave impedances ;icros the interfaces one gets

(0) (I,
V A

H(0) I) t ()32
z Z

L(1) .(2)

z(1.) if(2) 2
z z

Substituting the field components given in Equ;tions 8, 12, 14, 17, 19 and 22

into Equations 23 and 24 one obtains the di pur~ion rei,-tion

2

2 1 o 2
tanh (Xla/2) + 2 1( 2 +Ao) tanh(Ala/2) + 1 = 0 (25)1 0o

10

- r



which can be written in the followifng form

+ % )
tanh(A a) 2 (26)

I1 + Io 2

or

a n h .. . .... .... . .... .K - _ - -- - )- ( 2 7 )

Equation 27 is the final form for thu dispersion relation of the problem,

and will be solved for r, (= /k ) in the next sect ion.

One could havc defined I = k r - , in EquaLion 15 inIstead C.
2

=k o  -- . Then the i,.nrbolic functions sinh, cosh and tan..
in Equations 14, 17, 25 and 26 could have become trigonometric functions

sin, cos and tan after making thi, followinA replacements.

-* j "

sinh (k x) .j 'in (.x)

cosh (') Cos ix)
tan ( j . )

L11



1Il. PROPACATION CONSTANT AND WAVE IMI'EI)ANCE

To find the normalized propagation constant for given values of

Ir' C2 r and k a te di p,rciv ' Vquttion 27 has to be solved numericallv.

Before presenting the numerical --olut ion, the range.s of solution for real r

under the condition of c > > I tre anayzed.

In the range lhere - 1. the left-hand side of Equation 27 is purel:

imaginary, but the right-hand ide of this equation is real. This means
2

that no roots are possible for i.

In the range where E2r " , 1- left-hand side of Equation 27 is

still purely imaginary but the right-hand side of this equation is complex.

In order for this equation to have roots, th' real part of the right-hand

side must be equal to zero. A little algebra shows that this is not pssible.

Thus, no roots exist within this range.

In the range where Lr >2 > E2r' both the left- and right-hand sides

of Equation 27 are purely imaginary. This means that real roots for may

exist in this range.

In the range where 2 > f the right-hand side of Equation 27 is

negative real and left-hand siou is positLiv real. Hence, no roots are

possible in this range.

The above simple analysis shows that the real normalized propagation

constant is limited to the range c > V 2r . In the following, two

cases will be considered, namely c -'r = 1.04 and c2r = i.

1. £2r 1.04

From Reference12, the dimensions and spacings of the wooden struts,

the effective dielectric constant of the region below the wood platform is

estimated to be about 1.04. Figure 3 shows ; of the first TE surface-wave mode

versus k a for E2r 1.04 and Elr 4,6,10.

An inspection of Figure 3 and Equation 27 reveals that no real , i.e.,

no propagation, is possible until some critical value of k a is reached. Let
0

this frequency be called the cutoff frequency of the surface wave.

12
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Figure 3. The normalized propagation constant of the first TE surface-

wave mode versus k afor 1r=i.04 and] 4,6,10.
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Obviously, the cutoff frequency can be obtained from Equation 27 with

2 that is,

r_-7/2r- lr 2r-

tanh (k(n)a /e r-2rr ) - 2

c r r ir 2r

which gives

f(n) (n- i)n + arctan ( (2r- )/(E ir - £2r) )8
f _ x 3 x 108c 2iraVY 1  .

r - 'r

Here, f(n) is the cutoft frequency of th.. nth mode of the surface wave. The
c

first three cutoff frequencies are given in 'able 1.

TABLE 1. FIRST THREE CUTOFF FREOUENCIES

k(n)

ir 2r a(nB fcn) (Hz)c

1 4 1.04 1 v.2 0.0673

2 4I. 1.8933

3 4 1.04 177.6 3.7193

Figure 4 shows the normalized cutoff frequency (k 
1~a) versus c2  for ir= 4-10.

2. e 2 r =1

When =2r1 , Equation 27 bk-,ome,, for modes with H x(-x) = x(X),

tanh(ka 'Ir /2)a /2 12 (28)
2

2 Ir

and becomes, for modes with H x(-x) = - Hi(x)

cot~ (k 0a i2 - r
2 ) - lr

14
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3 I If i

E2r

-2r 1.04

EIr = 10

08

I'

i8

0 0.5
k 0a

Figure 5. The normalized 1 = /k of the first TE surface-wave mode

versus k0a for E2 r 1, 1.04 and c r 4,6,8,10.
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The normalized propagation constant F has real values under the condition

r> I at any frequency. Figure 5 shows F of the first TE surface-wave mode

versus k0a for various eir. It clearly shows that there is no cutoff frequency

for c2r=l .

In Figure 5, the C-value versus k a for E2r= 1.04 is also given. It

is observed that the difference in i-values for e 2r and c2r 1.04 is

generally negligible except at very small k a. Thus, only the simpler

results with e2r = I will be used in the following discussion and for the
,

comparison with the field mapping data.

After obtaining E, the !-pedance E(0 )/H(0 ) and EcO)/H(O) can be

y Z V x

calculated from the following two equations:

_(0)

E Z
Y0)z k 2 -i= -0 - (29)

z k 0 -0

o0)
Y o 0 0 0

- - - (30) _-(O) 0Hx

which are plotted in Figures 6 and 7 for c2r = I and various clr.

In the next section, the above results will bo used to compare with

the ATLAS I field mapping data.

Since Table I shows that the first cutoff frequency is about 3.2 MHz for

Elr= 4 and E2r = 1.04, one may question the validity of neglecting the

lower medium with e2r = 1.04. However, at this frequency the effect of

the ground is no longer negligible. When the ground is properly taken into

account, there will be no cutoff phenomenon.

17
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0.5

0.05
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Figure 6. Normalized j c)11 (.0) I of the first TE surface-wave
y x

mode versus koa for cr Iand r 4,810

18



10-

8

66

01

0 0.5
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Figure 7. Normalized of the first TE surface-wave mode
y z

versus k 0a for c 2r1 and c =r4,6,8,10.
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IV. ANALYTICAL REPRESENTATION OF A JI ' FIELDS

The t irst 1'i surface-wave mode described in the previous sect i(,s

will be ued to represent the field distributions within the I'RESTLU

s imulato r.

In Section III, curves for the ratio of the electric to magnetic field

(i.e., the wave impedances) of the first TE surface %,ave versus frequency

were obtained. The impedance curves (without normaliation) for c1r 4

10, and a = 0.5, 1, 1.5m are plotted in Figures 8 and 9 in the log-log

scale. In the figures, the i-r ,d-inc,. deduced from tile ATLAS I field

mapping data (Ref. ii) are also given. Good agreements are observed

between the field mapping data and the analytical results based on the

first TE surface-wave mode when E 4 and a= 1. (Also, see the finalIr

remark on pages 29 and 30).

In Figures 8 and 9, all the available field mapping data have been

used to obtain the impedances except for test points 17 and 21 whose

impedances are expected to be approximately equal to those of test points

13 and 22 (Fig. 10). Figure 10 shows all the test points that are in

Reference 11.

The good agreement shown in Figures 8 and 9 gives one the confidence

in using the first TE surface-wave mode for desciibing the ATLAS I fields.

The next step is the determination of the constant A in Equation 8. To

this end, the field mapping data of test point 2 are used. One typical
set of the frequency-domain curves of E() H)at this test point

Y p _(0) 0)
is given in Figure 11. The frequency dependences of and H arey x
almost the same, as they should be according to Equation 11, for the

frequency range where k a - 0.2 (frequency < 10 MHz). The asymptotes
0

are drawn in Figure 11 in broken lines leading to the following form for

the constant A:

Z H
0 0

(1+ stL1 )(l + st 2 ) (31)

20
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Figure 11. Frequency-domain curves of measured E~o and HO aty
test point 2 and their asymptotes (Ref.1 1).
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where

H = 6 x10 A/rn-Hz
0

t I = 3 1O-7 s

t 2 = 8 X10 s

In obtaining Equation 31, one has assumed o =0 at test point 2, and0

ignored the notch vff,,,t.

From Equations 8, ii and 31, 01 time-domain E (0t) and H ()(t) at
y x

test point 2 are

H ()(t) = E ((t)/Z 0 H -e / (32)
x y o

which is plotted in Figure 12. The agreement with field mapping data at

late times is excellent. But there is considerable difference at early

times. The difference is attributable to the notch existing in the pulser

voltages. To account for the notch effect, one may subtract a term from

Equation 32. From Figure 11 one can see that in the frequency domain the

term to be subtracted should behave as Il/s when I! is large,and should

have a double pole at = 3 MHz. Such a term has a time variation of the

form t exp(-t/t0 ) with t o = 6 x 10-8s. Thu-,

H 0 ()'o (et/t I  -tt 1.8t - t

H(t) - E ()(t)/Zo - 0t21 - e -"_2_.t e / (33)
x y t

where the coefficient 1.8/t is chosen in such a way that the best agreement
0

between Equation 33 and the field mapping curve can be obtained (except for

the prepulse region, Figure 12).

From Equations 12 and 33 the z-component of the ATLAS I magnetic field

can also be estimated. Generally, it will involve solving Equations 28 and 9

to obtain X as a function of w and, subsequently, inverting complicated

Fourier (or Laplace) integral. However, if one is only interested in the

late-time behavior of H(O)(t) where the high-frequency part of the spectrum
z (0)

is not important, a simple expression for H (t) can be obtained in thez
following manner: From Equation 12, one has

25
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I field mopping curve
-. -. Equation 32

..................... Equation 33

120-

JE

~90 ~

30

0 450 900 1350 1800
tMns)

Figure 12. Time-domain curves of H (0) and E()Zat test point 2 from field
x y 0

mapping data (Ref. 11) and analytical representations (Equations

32 and 33).
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H~0~w)(0) (0)HC E () H Mu
0

W(Elr- l)a_(O)
u2c Rx  (w) (koa<< ) (34)

Thus,

(
0~) (Co - l)a a
z 2c at x

Cr -l)a Ho  - t/t 1 - t/t2 + .8 -t / t o  3ir __ l ____ ~-- e 1 2- (35)
2c ti)t t t t/

(for t > tI )

Equation 35 is plotted in Figure 13 where a typical field mapping curve

is superimposed. The estimated H(O) (t) resembles the field mapping curve,
Zalthough relatively low in magnitude. The under-estimate of the late-time

H(O)(t)-value is probably due to the following reasons:

z

1. The sensor used in the field mapping test did not have an accurate

response at low frequencies, or, more specifically, gave an over-

estimate at the Ic- frequency region (Fig. 9).

2. The fact that the wood platform is of finite extent is not taken

into account in the theory.

It should be noted that Equations 32. 33, and 35 are derived for

a field point not too high above thu wooden platform. Thus, they are va1lid

only at field points where yox < I for the important spectrum range.

From Figure 7, it is observed that X\ a = 0.0 for k a = 0.2 andO 0

Elr m 4. This means that for a = lm and frequency 1 10 MHz, the decaying
distance D, defined by AoD = I is approximately given by

D = 16.5 m (36)

Also, 0 is proportional to (frequency) -2 at lower frequencies. It is

therefore reasonable to conclude that Equations 32, 33 and 35 are satis-

factory representations for the ATLAS I fields up to as high as 15 meters

above the wooden platform.

27
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5001000 1500 20
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Figure 1.3. Time-domain curves of H()at test point 2 (Ref.ll) from field
z

mapping data and analytical representation (Equation 35).
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Although Eir f 4 and a = im have been selected for the above analysis,

other values that show good agreements in Figures 8 and can be used as

well (e.g., clr = 6, a = 0.5m). The reason for selecting cir = 4 and a - im

is that they are closer to the actual situation. However, no matter what

values are used, Equations 32, 33 and 35 still hold true while the D-values

(i.e., Equation 36) will vary somewhat.

29



V. SUMMARY

The following simple analytical expressions have been obtained for

the fields above the wood platform of the ATLAS I simulator:

E(0)(t)= 7.5x 104( e-3 " 3xlO l O 8 t - 3 x 107t e- '6xl0 7t) V/

y

B( 0 )(t) -2.5 x - 4 (e-33xlO 6 t -e-1.2 -108t 3x txl
7 ) .. m2

X

B (0) (t)4 i ( e-3.3xI06 t - 36e - 1 " 2xI0 8 t + 9(l - 1.6xl07 t)e - 1 .6xlO 7 t )/ 2

z

where B ()(t) is valid only for t > 3x 10- S. These fields can be compared
z

with the criteria EMP fields given by (Ref. 13)

E(t) = 5 . 2 4  o 4x106 t e- 5  10e8 t) V/

B(t) = 1.75 x 10
- 4 (e

-4 x - e- 5  10't ) Wb/m
2

The term that corresponds to the notch has a double peak on the negative

real axis of the s-plane. This double pole lies betweer the two single poles

that correspond to the double exponentials.

30
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